Animated gifs on some slides.
See ppt version or separate indico attachment.

Probing for anomalous HVV couplings in production and decay $H \rightarrow 4\ell$ at CMS

Heshy Roskes (Johns Hopkins University)

for the CMS collaboration

The 26th International Workshop on Weak Interactions and Neutrinos (WIN2017)

UC Irvine

June 20, 2017

Anomalous couplings

- Search for anomalous HVV couplings in production and decay in the $H \rightarrow 4l$ channel
- Kinematics of decay
- New: kinematics of jets from VBF and VH production
- Use matrix element (MELA) discriminants
 - optimally select VBF and VH events
 - optimally separate different contributions to the amplitude
- Combine with Run 1 CMS analysis

$H(125) \rightarrow 4\ell$

References:

Run 1:

• CMS-HIG-14-018 spin anomalous couplings

Run 2:

- CMS-PAS-HIG-16-041 properties
- CMS-PAS-HIG-17-011
 anomalous couplings

- What is it?
- How does it interact with other particles?

4 CMS&ATLAS results

- Run 1: exclude spin 1 and 2
- Set limits on spin 0 anomalous couplings

CMS

- Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs CMS-HIG-12-041, arXiv:1212.6639
- Measurement of the properties of a Higgs boson in the four-lepton final state arXiv:1312.5353, CMS-HIG-13-002
- Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV arXiv:1411.3441, CMS-HIG-14-018

$f_{\Lambda Q}$

- Limits on the Higgs boson lifetime and width from its decay to four charged leptons arXiv:1507.06656, CMS-HIG-14-036
- Combined search for anomalous pseudoscalar HVV couplings in VH production and H to VV decay arXiv:1602.04305, CMS-HIG-14-035
- Measurements of properties of the Higgs boson and search for an additional resonance in the four-lepton final state at Vs = 13 TeV, CMS-PAS-HIG-16-033
- Constraints on anomalous Higgs boson couplings in production and decay H→4ℓ, CMS-PAS-HIG-17-011
 This analysis

ATLAS

- Evidence for the spin-0 nature of the Higgs boson using ATLAS data ATLAS arXiv:1307.1432
- Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector ATLAS arXiv:1506.05669
- Test of CP Invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector ATLAS arXiv:1602.04516

VV Production (decay to $f\bar{f}$)

 Measurement of inclusive and differential cross sections in the H → ZZ* → 4I decay channel at 13 TeV with the ATLAS detector ATLAS-CONF-2017-032

Run 2 results

Kinematics

- For a given $m_{4\ell}$, four-fermion system in production or decay is defined by:
 - 5 angles
 - Two $q_{V_i}^2$ of differmion systems
- For the production+decay: two HVV vertices
- 13 independent observables remain

HVV amplitude

•
$$A(HVV) \sim \left[a_1^{VV} + \frac{q_{V_1}^2 + q_{V_2}^2}{(\Lambda_1^{VV})^2} \right] m_{V_1}^2 \epsilon_{V_1}^* \epsilon_{V_2}^* + V \right]^{H}$$

$$a_2^{VV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

- VV = ZZ, WW, $Z\gamma$, $\gamma\gamma$
- SM, tree level: $a_1^{ZZ} = a_1^{WW} = 2$, others = 0
- Assume $a_i^{ZZ} = a_i^{WW}$, call it " a_i "
- Assume no q^2 cutoff for anomalous couplings
- Measure a_2 , a_3 , Λ_1 , $\Lambda_1^{Z\gamma}$
 - $a_{2,3}^{Z\gamma,\gamma\gamma}$ are already constrained from onshell photons
- Parameterize as fractional cross section $f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j}$ and relative phase $\phi_{ai} = \arg\left(\frac{a_i}{a_1}\right)$

Tools

- JHUGen
 - Generate samples with arbitrary couplings
 - $gg/q\overline{q} \rightarrow X \rightarrow ZZ/WW \rightarrow 4f$ for X spin 0, 1, 2
 - VBF, VH, ggH with 0, 1, or 2 QCD jets, ttH, bbH, tqH
- MELA—Matrix Element Likelihood Approach
 - Matrix element calculations
 - JHUGen for signal
 - MCFM for background
 - Calculate discriminants to distinguish hypotheses
 - Reweight generated samples to different hypotheses

Contributions

- Background
 - $q\bar{q}/gg \rightarrow ZZ$
 - Z + X
- Signal
 - ggH, VBF, VH, ttH
 - HVV couplings in decay
 - HVV couplings in production and decay
 - SM, anomalous, and interference contributions
- Want to isolate each component to constrain couplings
- 7 or 13 kinematic observables ($+m_{4\ell}$ for bkg separation)
 - too many to use them all

Two basic types of discriminants:

•
$$D_{alt} = \frac{p_{sig}}{p_{sig} + p_{alt}}$$

- Optimal to distinguish pure SM signal from alternate hypothesis
- Alternate hypothesis could be background, another coupling model, or another signal production mode

•
$$D_{int} = \frac{p_{int}}{p_{sig} + p_{alt}}$$

- Together with D_{alt} , optimal to also isolate the interference contribution
- p_{sig} , p_{alt} , p_{int} are calculated through MELA using matrix element probabilities

¹⁰ Discriminants 1

•
$$D_{2jet}^{VBF/ZH/WH} = \frac{p_{VBF/ZH/WH}}{p_{VBF/ZH/WH} + p_{Hjj}}$$

- Separate associated production from QCD jets
- VBF-jet category:

•
$$D_{2jet}^{VBF,SM} > 0.5 \text{ or } D_{2jet}^{VBF,BSM} > 0.5$$

- VH-jet category:
 - $D_{2jet}^{ZH,SM} > 0.5$ or $D_{2jet}^{ZH,BSM} > 0.5$ or $D_{2jet}^{WH,SM} > 0.5$ or $D_{2jet}^{WH,BSM} > 0.5$
- Untagged category:
 - Everything else
- Use D_{2jet}^{SM} and D_{2jet}^{BSM} to get optimal separation for both extreme hypotheses

- Use 3D templates to parameterize the signal and background for each category
- D_{bkg} , D_{ai} , D_{int}
- $D_{bkg} = \frac{p_{sig}}{p_{sig} + p_{bkg}}$
 - Used for all 3 categories
 - $m_{4\ell}$ + decay kinematics

- D_{bkg} , D_{ai} , D_{int}
- Tagged categories: use production×decay probabilities
- Untagged: use decay probabilities only
- Example: D_{0-} for the f_{a3} analysis

- D_{bkg} , D_{ai} , D_{int}
- $D_{int} = \frac{p_{int}}{p_{sig} + p_{alt}}$
- Tagged categories: use production probabilities
- Untagged: use decay probabilities

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{|a_1|^2 \sigma_1 + |a_i|^2 \sigma_i + \cdots}$$

Likelihood fit

- Assume real couplings, $\phi_{ai}=0$ or π
- ggH, only one HVV vertex:

 $\frac{|a_i|}{H} = \sqrt{\frac{f_{ai}}{f_{a1}}} \frac{\sigma_1}{\sigma_i}$

• VBF or VH, two HVV vertices

•
$$p(f_{ai}, \overrightarrow{\Omega})$$
 $\sim \left| (a_1 A_1^{prod} + a_i A_i^{prod})(a_1 A_1^{dec} + a_i A_i^{dec}) \right|^2$
 $\sim \sum_{j=0}^{4} \left| \frac{a_i}{a_1} \right|^j \cos^j \phi_{ai} T_j(\overrightarrow{\Omega})$
 V
 V

Signal strength

- Want to decouple ratios of couplings f_{ai} from the signal strengths μ_i
- Allow signal strength for production via fermion couplings μ_f and boson couplings μ_V to float independently
- Constrained by category distribution of events

Event distribution

- First number is for SM, (second) is for $f_{a3} = 1$
- Use categorization for f_{a3} analysis, others are a bit different
 - (In particular, fewer observed events in VBF-jets)

	VBF-jets	VH-jets	untagged	2015
VBF signal	2.4 (1.6)	0.1 (0.1)	2.2 (0.3)	0.4 (0.2)
ZH signal	0.1(0.2)	0.3(0.5)	0.7(1.0)	0.1(0.1)
WH signal	0.1(0.3)	0.3(1.0)	0.8(2.2)	0.1(0.3)
$gg \rightarrow H signal$	3.2 (3.3)	1.9 (2.0)	49.6 (49.4)	4.4(4.4)
tīH signal	0.1(0.1)	0.0(0.0)	0.5(0.6)	0.0(0.1)
$q\overline{q} o 4\ell$ bkg	0.9	1.1	56.3	5.2
$gg o 4\ell$ bkg	0.1	0.1	5.5	0.5
VBF/VVV bkg	0.1	0.0	0.4	0.0
Z+X bkg	3.6	2.0	29.1	1.7
Total expected	10.7	5.8	145.2	12.9
Total observed	11	2	145	11

Results

- Scans for each parameter
- 13 TeV only, and combination with Run 1 result

More details: f_{a3}

- 1D projections help to explain
- Small excess of events at smaller values of D_{0-}^{dec}
 - Minimum away from 0
- D_{CP} has small excess on the right

CMS Preliminary

Events / 0.05

total SM

VBF+VH SM total $f_{a3} = +0.5$

 $VBF+VH f_{a3} = +0.5$

- +0.3 is favored over -0.3
- Combine with Run 1: minimum at $f_{a3} = 0$

More details: f_{a3}

 VBF and VH are sensitive to very small f_{a3}

 $5.1 \text{ fb}^{-1} (7 \text{ TeV}) + 19.7 \text{ fb}^{-1} (8 \text{ TeV}) + 38.6 \text{ fb}^{-1} (13 \text{ TeV})$

Observed, 13 TeV Expected, 13 TeV

Observed Expected

(a)⁻

CMS Preliminary

μ_V

- Observe fewer
 VBF and VH events
 than expected
- Best fit μ_V for $f_{ai} = 0$ is < 1 (values on plots)
- Narrow minima not as deep as expected

Parameter	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	$0.00^{+0.26}_{-0.09}$ [-0.38, 0.46]	$0.000^{+0.010}_{-0.010} [-0.25, 0.25]$
$f_{a2}\cos(\phi_{a2})$	$0.01^{+0.12}_{-0.02}$ [-0.04, 0.43]	$0.000^{+0.009}_{-0.008}$ [-0.06, 0.19]
$f_{\Lambda 1}\cos(\phi_{\Lambda 1})$	$0.02^{+0.08}_{-0.06}$ [-0.49, 0.18]	$0.000^{+0.003}_{-0.002}$ [-0.60, 0.12]
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.26^{+0.30}_{-0.35}$ [-0.40, 0.79]	$0.000^{+0.019}_{-0.022}$ [-0.37, 0.71]

More details: f_{a3}

- Animations: each frame uses the best fit μ_V and μ_f
- are the cross section fractions for those processes
- Watch what happens when $f_{a3} \lesssim 0.01$

Summary

- Constrain anomalous HVV couplings[№]
- Decay information: $4 \times$ more data than in Run 1
- Production information: expected 1σ exclusion of small f_{ai} values, observation falls a little short
- By the end of Run 2: expect production information to give narrow 2σ limits

Backup

Categorization

•
$$D_{2jet}^{VBF/ZH/WH} = \frac{p_{VBF/ZH/WH}}{p_{VBF/ZH/WH} + p_{Hjj}}$$

- Separate associated production from QCD jets
- VBF-jet category:
 - exactly 4 leptons
 - 2 or 3 jets with at most one btag, or ≥ 4 jets with no btag
 - $D_{2,iet}^{VBF,SM} > 0.5 \text{ or } D_{2,iet}^{VBF,BSM} > 0.5$
- VH-jet category:
 - exactly 4 leptons

 - 2 or 3 jets with at most one btag, or ≥ 4 jets with no btag
 D_{2 jet}^{ZH,SM} > 0.5 or D_{2 jet}^{ZH,BSM} > 0.5 or D_{2 jet}^{WH,SM} > 0.5 or D_{2 jet}^{WH,BSM} > 0.5
- Untagged category:
 - Everything else
- Use D_{2jet}^{SM} and D_{2jet}^{BSM} to get optimal separation for both extreme hypotheses

Discriminants table

category	VBF-jet	VH-jet	Untagged
target	$qq'VV \to qq'H \to (jj)(4\ell)$	$q\bar{q} \to VH \to (jj)(4\ell)$	$ ext{H} ightarrow 4\ell$
selection	$\mathcal{D}_{2 ext{jet}}^{ ext{VBF}} ext{ or } \mathcal{D}_{2 ext{jet}}^{ ext{VBF,BSM}} > 0.5$	$\mathcal{D}_{2 ext{jet}}^{ ext{ZH}} ext{ or } \mathcal{D}_{2 ext{jet}}^{ ext{ZH,BSM}} ext{ or } $ $\mathcal{D}_{2 ext{jet}}^{ ext{WH}} ext{ or } \mathcal{D}_{2 ext{jet}}^{ ext{WH,BSM}} > 0.5$	not VBF-jet not VH-jet
f_{a3} obs.	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0-}^{ ext{VBF}+ ext{dec}}$, $\mathcal{D}_{ ext{CP}}^{ ext{VBF}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0-}^{ ext{VH}+ ext{dec}}$, $\mathcal{D}_{ ext{CP}}^{ ext{VH}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0-}^{ ext{dec}}$, $\mathcal{D}_{CP}^{ ext{dec}}$
f_{a2} obs.	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0h+}^{ ext{VBF}+ ext{dec}}$, $\mathcal{D}_{ ext{int}}^{ ext{VBF}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0h+}^{ ext{VH}+ ext{dec}}$, $\mathcal{D}_{ ext{int}}^{ ext{VH}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0h+}^{ ext{dec}}$, $\mathcal{D}_{ ext{int}}^{ ext{dec}}$
$f_{\Lambda 1}$ obs.	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{ ext{VBF+dec}}, \mathcal{D}_{0h+}^{ ext{VBF+dec}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda 1}^{ ext{VH+dec}}$, $\mathcal{D}_{0h+}^{ ext{VH+dec}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda 1}^{ ext{dec}}$, $\mathcal{D}_{0h+}^{ ext{dec}}$
$f_{\Lambda 1}^{{ m Z}\gamma}$ obs.	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{ ext{Z}\gamma, ext{VBF}+ ext{dec}}, \mathcal{D}_{0h+}^{ ext{VBF}+ ext{dec}}$	$\mathcal{D}_{\mathrm{bkg}}, \mathcal{D}_{\Lambda 1}^{\mathrm{Z}\gamma,\mathrm{VH+dec}}, \mathcal{D}_{0h+}^{\mathrm{VH+dec}}$	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{ ext{Z}\gamma, ext{dec}}, \mathcal{D}_{0h+}^{ ext{dec}}$

CMS-HIG-14-036

- Λ_Q gives same kinematics, different mass shape
- Search from offshell region
- Limits assume $\Gamma_H = 4.1$ MeV